System Model and Problem Statement

Attacks on Anonymous Communications

An adversary observes ρ communication rounds and wants to estimate the sending profile of Q

Statistical Disclosure Attack family

SDA's idea: separate 8
from the rest of the users: $\quad 8+\ddot{\Delta}+\vec{Z} \rightarrow$

$2^{\text {nad }}$ Estimate Q's sending profile 2
Rounds where 8 Messages sent by Messages sent by participates 8 in those rounds in those rounds

 $\xrightarrow{3} \begin{array}{rl}2-8 \\ \rightarrow & -8 \\ 0 & 8 \\ 0 & 8 \\ 0 & 8 \\ 0 & 8\end{array}$

Equivalent system for the SDA adversary:

$\rightarrow \begin{array}{r}12 \\ 0 \\ 0 \\ 0 \\ 2 .\end{array}$ $\begin{array}{r}8 \\ 8 \\ 8 \\ 8 \\ -8 \\ \hline\end{array}$ \square

\qquad

Messages sent by 8 in those rounds

\qquad
(\#2) \square

 10 $\sqrt[33]{8-2}=$ $-2_{2}=?$
 8
-8
8
8
8

Rounds where 8
participates, counted
once for each \boxtimes sent

Attack Performance

Mean Squared Error in the estimation of the sender profile of Ω :

$$
\begin{aligned}
& \operatorname{MSE}_{Q}^{\text {uSDA }} \approx \frac{1}{\rho}\left\{\left(f_{Q}^{-1}-1\right)\left(1-\frac{1}{t}\right) \bar{\mu}_{\text {uSDA }}+\frac{f_{Q}^{-1}}{t} \cdot \mu_{Q}\right\} \\
& \mathrm{MSE}_{\mathrm{Q}}^{\mathrm{SDA} 2} \approx \frac{1}{\rho}\left\{\left(f_{\mathrm{Q}}^{-1}-1\right)\left(1-\frac{1}{t}\right) \bar{\mu}_{\mathrm{SDA} 2}+\frac{f_{Q}^{-1}}{t} \cdot \mu_{\mathrm{Q}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (from } 0 \text { to 1) } \\
& \text { Q's uniformity: from } 0 \text { to } \approx 1 \\
& \bar{\mu}_{\text {LSD }} \leq \bar{\mu}_{\text {StA } 2}
\end{aligned}
$$

Experimental results:
$\rho=20.000$ rounds

