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Anonymity? How?
• Changing appearance 

(re-encryption)

MIX

The adversary is able to 
learn Alice’s sending 
profile with the timing 
information!!!
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ANONYMOUS

Anonymity? How?
• Changing appearance 

(re-encryption)
• Removing timing 

information (delays)

MIX



Introduction. LSDA (I)
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Introduction. LSDA (I)
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Least-Squares

Disclosure Attack



Introduction. LSDA (II)
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Real data:
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220.000 emails sent between employees of Enron Corporation. 

http://www.cs.cmu.edu/~./enron/

400.000 location check-ins from Gowalla social networking website.

http://snap.stanford.edu/data/loc-gowalla.html

180.000 posts to the public mailing lists of Indimedia

http://lists.indimedia.org/



Motivation: LSDA’s analysis falls short
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Real-World Behavior. Input process.
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Emails dataset



Real-World Behavior. Output process.
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=2 1.85 1.03 1.29

=3 2.71 1.05 1.46

=4 3.53 1.06 1.53

=5 4.40 1.08 1.53

≥6 13.56 1.11 1.57
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Average number of receivers chosen



New Theoretical Analysis (I)
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Multinomial output

Maximum variance output

“uniformity”

Number of
rounds observed

Variance of the number
of messages sent

Global contribution
Individual term



New Theoretical Analysis (II)
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Results
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Thank you!!
simonoya@gts.uvigo.es


