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Abstract
Effective query recovery attacks against Searchable Sym-
metric Encryption (SSE) schemes typically rely on auxil-
iary ground-truth information about the queries or dataset.
Query recovery is also possible under the weaker statistical
auxiliary information assumption, although statistical-based
attacks achieve lower accuracy and are not considered a seri-
ous threat. In this work we present IHOP, a statistical-based
query recovery attack that formulates query recovery as a
quadratic optimization problem and reaches a solution by
iterating over linear assignment problems. We perform an
extensive evaluation with five real datasets, and show that
IHOP outperforms all other statistical-based query recovery
attacks under different parameter and leakage configurations,
including the case where the client uses some access-pattern
obfuscation defenses. In some cases, our attack achieves al-
most perfect query recovery accuracy. Finally, we use IHOP
in a frequency-only leakage setting where the client’s queries
are correlated, and show that our attack can exploit query de-
pendencies even when PANCAKE, a recent frequency-hiding
defense by Grubbs et al., is applied. Our findings indicate
that statistical query recovery attacks pose a severe threat to
privacy-preserving SSE schemes.

1 Introduction

Searchable Symmetric Encryption (SSE) schemes [37] allow
a client to securely outsource a dataset to a cloud-storage
provider, while still being able to perform secure queries
over the dataset. Efficient SSE schemes [2, 4, 5, 8, 17, 19, 23,
24, 28, 30, 38] typically leak certain information during their
initialization step or querying process, that an honest-but-
curious service provider could exploit to recover the database
or guess the client’s queries. This leakage typically consists
of the access pattern, which refers to the identifiers of the
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documents that match a query, and the search pattern, which
refers to whether or not two queries are identical.

There are many attacks that exploit access and search pat-
tern leakage, as well as auxiliary information, to either re-
cover the underlying keywords of the client’s queries, or the
dataset itself. In this work, we study passive query recov-
ery attacks [1, 3, 9, 18, 26, 29, 31, 34] against SSE schemes
that provide keyword query functionality. Namely, the dataset
is a set of documents, each labeled with a list of keywords,
and the client wants to be able to query for all the docu-
ments that match a particular keyword. The adversary is an
honest-but-curious service provider that follows the SSE pro-
tocol, but might want to infer the keywords of the client’s
queries from passively observing the system. We can broadly
classify passive query recovery attacks depending on the na-
ture of their auxiliary information into attacks that assume
partial ground-truth knowledge about the dataset and/or the
underlying keywords of the client’s queries (ground-truth
attacks) [1, 3, 9, 18, 29], and those that only require sta-
tistical information about the keyword distribution in the
dataset and the client’s querying behavior (statistical-based
attacks) [18, 31, 34]. Previous work has shown that ground-
truth attacks can achieve high query recovery rates [1, 9, 29],
and thus pose a significant privacy threat to SSE schemes.
Statistical-based attacks achieve lower query recovery accu-
racy, since they rely on a weaker auxiliary information as-
sumption, although they are easier to adapt against access and
search-pattern defense techniques [31].

In this work we focus on statistical-based query recov-
ery attacks. The strongest attacks from this family are
GraphM by Pouliot and Wright [34] and SAP by Oya and Ker-
schbaum [31]. GraphM performs query recovery by heuristi-
cally solving a quadratic optimization problem. This attack ex-
ploits the so-called volume co-occurrence information, which
refers to how many documents two queries have in com-
mon, but uses the expensive PATH algorithm [42], and thus
only works when the keyword universe size is small. On the
other hand, SAP [31] efficiently solves a linear problem using
individual keyword volume information as well as query fre-
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quency information, but cannot take into account volume co-
occurrence. In this paper, we propose a new statistical-based
query recovery attack, that we call IHOP since it follows an It-
erative Heuristic algorithm to solve a quadratic Optimization
Problem. IHOP can be used with any quadratic objective func-
tion, and thus it can combine volume and frequency leakage in-
formation like SAP [31], exploit volume co-occurrence terms
like GraphM [34], and is the first attack to exploit frequency
co-occurrence terms. We use IHOP to optimize a maximum-
likelihood-based objective function, and evaluate our attack
in five real datasets under different settings. First, we consider
the case where the adversary only uses volume leakage, where
GraphM is state-of-the-art. We show that, both in SSE schemes
that fully leak the access patterns during initialization [17,24]
and in those that (at least) leak the access pattern of those
keywords that are queried [2, 4, 5, 8, 19, 23, 28, 30, 38], IHOP
consistently outperforms GraphM, achieving higher accuracy
while being orders of magnitude faster (e.g., IHOP achieves
≈ 99% accuracy on Lucene dataset with n = 1000 keywords
and finishes in 15 minutes, while GraphM is achieves ≈ 56%
accuracy and takes almost three days to finish). Second, we
consider the case where the adversary uses frequency leak-
age and the client sends queries independently, where SAP is
state-of-the-art. We show that IHOP comfortable outperforms
SAP and all other attacks, even in the case where the client
uses two access-pattern-hiding defenses [6, 36].

Finally, we show that IHOP can also exploit query correla-
tions in query recovery. For this, we consider a case where the
client queries dataset entries individually and thus the attack
must rely on query frequency information only. PANCAKE,
a system proposed by Grubbs et al. [13], provably ensures
that the frequency of access to each dataset entry is the same.
Although PANCAKE does not hide query correlations, a pre-
liminary analysis shows that it still provides sufficient protec-
tion in that case [14]. We adapt IHOP against PANCAKE when
client’s queries follow a Markov process, and show that our
attack can effectively exploit query correlations to recover
keywords (in our example, IHOP achieves ≈ 48% accuracy
when the adversary has low-quality auxiliary information
about the client’s querying behavior, and ≈ 69% accuracy
when the adversary has high-quality information).

In summary, we propose a statistical-based query recov-
ery attack that outperforms all other known attacks when
the adversary does not have ground-truth information on the
client’s dataset or queries [18, 26, 31, 34]. Our results show
that statistical-based query recovery attacks pose a serious
threat to SSE schemes, since they can achieve high recov-
ery rates without access to ground-truth information and can
adapt against volume and frequency-hiding defenses.

2 Related work

Since their inception [8,37], many authors have proposed SSE
schemes with different privacy and utility trade-offs. Design-

ing SSE schemes without access pattern leakage implies lever-
aging expensive primitives such as ORAM [12] or PIR [7],
which incurs expensive bandwidth, computational, and stor-
age costs, while still being vulnerable to certain volume-based
attacks [15, 20, 33]. In this work we target efficient and de-
ployable SSE schemes that leak the access and search pat-
terns [2, 4, 5, 8, 17, 19, 23, 24, 28, 30, 37, 38]. We consider SSE
schemes where the client performs keyword queries (i.e., the
client queries for a single keyword to retrieve all documents
that match that keyword) and the adversary is an honest-but-
curious service provider that performs a query recovery attack
to guess the underlying keywords of the client’s queries.

Query recovery attacks can be broadly classified depending
on the auxiliary data they require into ground-truth attacks [1,
3,9,18,29], which partially know some of the client’s queries
or database, and statistical-based attacks [18, 26, 31, 34], that
have statistical information about the database and client’s
querying behavior (e.g., a set of non-indexed documents).

Ground-truth attacks Islam et al. [18] propose one of the
first query recovery attacks (IKK) that assumes full dataset
knowledge and partial query knowledge. Their attack exploits
access pattern leakage to compute volume co-occurrence ma-
trices and solves a quadratic optimization problem using simu-
lated annealing. Cash et al. [3] propose the count attack, which
improves upon IKK by requiring only partial database knowl-
edge. This attack follows an iterative algorithm that keeps
reducing the set of candidate keywords for each unknown
query until only one feasible candidate remains. Blackstone
et al. [1] propose an attack based on subgraphs that follows
different refinement heuristics to the count attack, outperform-
ing it. Recently, Damie et al. [9] proposed a hybrid attack that
uses ground-truth query knowledge, but only statistical dataset
information, and Ning et al. [29] propose a ground-truth attack
that achieves both keyword and document recovery.

Statistical-based attacks Even though IKK originally as-
sumes ground-truth dataset and query knowledge [18], this
attack can also be evaluated in the setting where only statisti-
cal information is available (see Sec. 5). The graph matching
attack (GraphM) by Pouliot and Wright [34] uses volume infor-
mation computed from access-pattern leakage, like IKK, but
uses a more refined optimization function and looks for a solu-
tion using graph matching algorithms [39,42]. The frequency-
only attack (Freq) by Liu et al. [26] exploits search-pattern
leakage and auxiliary information about the client’s query-
ing behavior to perform query recovery. Recently, Oya and
Kerschbaum [31] proposed SAP, an attack that exploits both
volume and frequency information to efficiently solve a linear
assignment problem using known optimal solvers [11].

Even though query recovery rates achieved by statistical-
based attacks are typically below those achieved by ground-
truth attacks, due to their weaker auxiliary knowledge assump-
tions, statistical-based attacks can be easily tuned [31] against
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volume-padding defenses [6, 10, 32]. Ground-truth attacks,
however, perform poorly against such defenses [36], since
they are designed to use exact information about the data and
the defenses typically randomize the leaked patterns.

3 Problem Statement

3.1 Overview

Our system model consists of two parties: a client and a server.
The client owns a privacy-sensitive dataset that she wishes
to store remotely on the server. The server offers storage ser-
vices (e.g., it is a cloud storage provider), but is not trusted
by the client. The client encrypts each document using sym-
metric encryption, and sends the encrypted documents to the
server. Each document has a set of keywords attached to it,
and the client wishes to be able to issue keyword queries, i.e.,
queries that retrieve all the documents that contain a particular
a keyword.1 In order to achieve this search functionality in
the encrypted dataset, the client uses a Searchable Symmetric
Encryption (SSE) scheme. This SSE scheme has an initializa-
tion step where the client generates an encrypted search index,
which she sends to the server alongside the encrypted docu-
ments. Later, when the client wishes to query for a particular
keyword, she generates a query token from that keyword and
sends it to the server. The server evaluates the query token in
the encrypted search index, which reveals which encrypted
documents should be returned to the client in response.

The server is honest-but-curious, i.e., it follows the protocol
specifications, but might be interested in learning sensitive
information from the client from passive observation. We
focus on an adversary that wants to guess the underlying
keywords of the client’s issued query tokens, i.e., to perform
a query recovery attack. This can in turn help the adversary
guess the keywords attached to each encrypted document
(database recovery attack).

Even though encrypting the documents and hiding which
documents contain each keyword through the encrypted
search index prevents the adversary from trivially matching
query tokens to keywords, most efficient SSE schemes leak
certain information that can be used to carry out a query re-
covery attack, with the help of certain auxiliary information.
There are two typical sources of leakage in existing SSE
schemes: access pattern leakage and search pattern leakage.

The access pattern of a query is the list of document iden-
tifiers that match the given query (i.e., the identifiers of the
documents that the server returns to the client in response to
the query). The search pattern refers to whether or not two

1Note that some works consider datasets where each document is associ-
ated to a single keyword [10, 32] (e.g., the keyword can be the document’s
publication date), and thus queries for different keywords always return dis-
joint sets of documents. The attacks we consider in this paper rely on volume
co-occurrence leakage, which only occurs when at least some documents
have more than one keyword.

Nd Number of documents in the dataset.
n Total number of keywords, n .

= |∆k |.
m Total number of observed query tokens, m .

= |∆τ |.
ρ Number of queries issued by the client.
D Dataset D .

= {d1,d2, . . . ,dNd}
∆k Keyword universe ∆k

.
= [k1,k2, . . . ,kn].

∆τ Token universe ∆τ

.
= [τ1,τ2, . . . ,τm].

ki ith keyword, with i ∈ [n].
τ j jth query token, with j ∈ [m].
a j Access pattern for token τ j (Nd×1).
V Matrix of observed token volumes (m×m).
Ṽ Matrix of auxiliary keyword volumes (n×n).
f Vector of observed token frequencies (m×1).
f̃ Vector of auxiliary keyword frequencies (n×1).

F Markov matrix of observed token freqs. (m×m).
F̃ Markov matrix of auxiliary keyword freqs. (n×n).

Table 1: Summary of notation

queries are identical (i.e., whether they have the same underly-
ing keyword). An adversary with auxiliary information about
how often the client queries for particular keywords, or how
many documents have certain keywords, can leverage this
leakage to carry out a query recovery attack.

3.2 Formal Problem Description and Notation
We formalize the problem described above and introduce our
notation, which we summarize in Table 1. We note that this
general description is not tailored to a specific SSE scheme,
but accommodates a broad family of SSE schemes that leak
the access and search patterns [2, 4, 5, 8, 17, 19, 24, 28, 37, 38].

We use boldface lowercase characters for vectors (e.g., a),
and boldface uppercase characters for matrices (e.g., A). The
transposition of A is AT , and Ai, j is the i, jth entry of A. All
products between matrices and vectors are dot products. We
use [n] .= {1,2, . . . ,n} for a positive integer n.

We denote the client’s dataset by D .
= {d1,d2, . . . ,dNd},

where Nd is the number of documents. We refer to the doc-
uments by their index, and assume that they are randomly
shuffled during setup so that their index does not reveal any
information about their content. Each document has a set of
keywords attached to it, and keywords belong to the keyword
universe ∆k

.
= {k1,k2, . . . ,kn}, of size n. The client encrypts

each document d ∈ D, uses an SSE scheme to generate an
encrypted search index, and sends the encrypted dataset and
index to the server. In order to query for a particular keyword
k ∈ ∆k , the client first generates a query token τ using k, and
she sends it to the server. The server evaluates the query token
τ on the encrypted search index, which reveals the access
pattern, i.e., the indices of the documents that match the query.
We represent the access pattern of a token τ j as a column
vector a j of length Nd whose ℓth entry is 1 if dℓ matches the
query, and 0 otherwise. We consider SSE schemes that reveal
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the search pattern, i.e., they reveal whether or not two query
tokens were generated with the same underlying keyword.
Thus, in our notation we use τ j and τ j′ ( j ̸= j′) for two to-
kens that have been generated with different keywords. We
use ∆τ

.
= {τ1,τ2, . . . ,τm} to denote the set of all (m) distinct

tokens observed by the adversary.

3.2.1 Adversary’s observation and auxiliary information

We use obs to denote the adversary’s observation, which cor-
responds to both the leakage of the SSE scheme during its
initialization step and while the client performs queries. Typ-
ically, obs comprises the access and search patterns of the
queries, i.e., obs= [(τ,a)1,(τ,a)2, . . . ,(τ,a)ρ], where (τ,a)r
is the query token and access pattern of the rth query. Most
statistical-based query recovery attacks compute certain sum-
mary statistics from the observation before running the at-
tack [3, 18, 31, 34]. These statistics are typically the volume
and frequency information, which we define next. The matrix
of observed volumes V is an m×m matrix whose j, j′th entry
contains the number of documents that match both query to-
kens τ j and τ j′ , i.e., V j, j′ = aT

j a j′/Nd . The vector of observed
query frequencies f is a vector of length m whose jth entry
contains the number of times the client queried for τ j, normal-
ized by the total number of queries ρ. The (Markov) matrix
of observed query frequencies F is an m×m matrix whose
j, j′th entry contains the number of times the client sent token
τ j′ followed by τ j, normalized by the total number of queries
with token τ j′ (which we denote by ρ(τ j′)).

We use aux to denote the adversary auxiliary’s information.
Since we consider statistical-based attacks, this information
does not contain ground-truth knowledge about the queries
and/or dataset. The adversary uses aux to compute the vectors
and matrices Ṽ, f̃, F̃, whose structure is the same as the vari-
ables that the adversary can compute for the observations (V,
f, F), defined above. In this paper, we generate the auxiliary in-
formation related to keyword volume by giving the adversary
non-indexed documents [9, 31, 34] (i.e., documents not in the
client’s dataset), and auxiliary frequency information by giv-
ing the adversary outdated query frequencies [31]. Note that
the observed variables (V, f, F) refer to volume and frequency
statistics computed from the query tokens, but the auxiliary
variables (Ṽ, f̃, F̃) refer to the keywords. For example, Ṽ is an
n×n matrix whose i, i′th entry contains an approximation of
the percentage of documents that have both keywords ki and
ki′ in the dataset. In most of the SSE schemes we consider
in this paper, there is a one-to-one correspondence between
keywords and tokens, which the adversary aims to guess.2 We
note that auxiliary information is imprecise: the actual per-
centage of documents with keywords ki and ki′ in the dataset
will likely differ from Ṽi,i′ .

2We also consider two schemes where different tokens might correspond
to the same keyword [13, 36]; we explain the details in Sections 5.2 and 6.

3.2.2 Leakage scenarios

We consider three different leakage scenarios in our paper.
These scenarios abstract from the actual SSE scheme being
used, and all SSE schemes that have at least this leakage are
subject to the attacks we study in that setting.

• S1: full access-pattern leakage, no queries. In this
scenario, the client uses a scheme whose initialization
step leaks which documents are returned as a response
to each query token. (This corresponds to the leakage
type L2 by Cash et al. [3].) A simple example of this is
a scheme where the client uses deterministic encryption
to generate a query token from a keyword, and simply
sends the server the list of encrypted documents with
the query tokens corresponding to the keywords they
contain. In this setting, we run the attack before the client
has performed any query. The adversary’s observation
is therefore obs = [a1,a2, . . . ,am], and thus the attack
relies solely on volume information (V and Ṽ).

This setting includes academic proposals [17,24] as well
as commercial products (e.g., see Cash et al. [3]).

• S2: access-pattern leakage for queries. In this scenario,
the initialization step does not leak any information. The
client issues queries, and each token τ leaks its access
pattern a, i.e, the list of documents returned in response
to that token. (This corresponds to the leakage type L1
by Cash et al. [3].) Let (τ,a)r be the query token and
access pattern of the rth query and assume that the client
performs ρ queries in total. The adversary’s observation
is obs= [(τ,a)1,(τ,a)2, . . . ,(τ,a)ρ]

In this scenario, some keywords might never be queried,
so the adversary might not see all possible access pat-
terns (m≤ n), contrary to S1. We study two cases: when
the adversary does not have auxiliary frequency infor-
mation and thus it relies on volume information only (V
and Ṽ), and when the adversary can additionally exploit
independent query frequencies (f and f̃) to aid the attack.

Most efficient SSE schemes exhibit at least this leak-
age [2, 4, 5, 8, 17, 19, 23, 24, 28, 30, 37, 38]

• S3: frequency-only leakage. Finally, we consider a set-
ting identical to S2 where each keyword matches ex-
actly one document, and no two keywords match the
same document. This means that n = Nd and, with-
out loss of generality, ki matches only di. In this case,
only frequency information is useful for query recovery:
obs= [(τ)1,(τ)2, . . . ,(τ)ρ].

We consider this setting to evaluate the effectiveness of
our attack in the presence of query dependencies without
volume leakage (i.e., the adversary only uses F and F̃).
This is important since our attack is the first query recov-
ery attack that can exploit query correlations (besides
the attack example in the appendix of [14]).
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3.2.3 Adversary’s goal and success metrics

The goal of the adversary is to carry out a query recovery
attack, i.e., to find the underlying keywords of each query
token. The outcome of the attack is therefore an injective
(one-to-one) mapping from the set of query tokens to the set
of keywords, which we denote by p(·) : [m]→ [n]. For ex-
ample, p( j) = i denotes that the adversary guesses that the
underlying keyword of token τ j is ki. We sometimes represent
this mapping as an n×m matrix P where Pi, j = 1 if p( j) = i,
and 0 otherwise. We use P to denote the set of all valid map-
pings P, i.e., P .

= {P|1T
n P = 1T

m,P1m ≤ 1n,P ∈ {0,1}n×m},
where 1n is an all-ones column vector of length n.

A query recovery attack takes the observations obs and
auxiliary information aux as input, and produces a mapping of
query tokens to keywords P as output. We measure the success
of an attack as the percentage of observed query tokens (τ ∈
∆τ) for which the attack correctly guesses their underlying
keyword. This is the most popular success metric in previous
works, and it is referred to as the attack accuracy [18, 26, 31,
34] or the query recovery rate [1, 3].

4 Quadratic Query Recovery with IHOP

In this section, we present our query recovery attack, which
we call IHOP (Iteration Heuristic for quadratic Optimization
Problems). We begin with an overview of statistical query
recovery attacks, noticing that some solve linear optimization
problems, while others are based on quadratic problems. We
then propose IHOP, which uses a linear optimization solver
to iteratively look for a (suboptimal) solution to a quadratic
query recovery problem. IHOP is a general algorithm that can
be used to minimize different quadratic objective functions.
We particularize it to use the volume and frequency statistics
we mentioned in Section 3.2.1, using a maximum likelihood-
based objective function. We evaluate the performance of
IHOP in Sections 5 and 6.

4.1 Linear and Quadratic Query Recovery

Most query recovery attacks can be framed as an optimization
problem, where the adversary tries to find the assignment of
keywords to query tokens P that minimizes a certain objective
function. These problems are typically linear or quadratic
with respect to P. Linear query recovery attacks [26, 31] can
be formulated as

P = argmin
P∈P

∑
i∈[n]

∑
j∈[m]

ci, j, ·Pi, j . (1)

This problem follows the structure of a Linear Assignment
Problem (LAP), which can be optimally solved with a compu-
tational cost of O(n ·m+m2 · logm) [11]. The constants ci, j
represent the cost of assigning keyword ki to token τ j.

∆k∆τ

P

τ1
τ2
τ3
τ4

k1
k2
k3
k4
k5

(d) After
iteration

∆k∆τ

τ1
τ2
τ3
τ4

k1
k2
k3
k4
k5P◦

(c) Compute mapping
for free tokens

∆k∆τ

P•
τ1
τ2
τ3
τ4

k1
k2
k3
k4
k5

(b) Select fixed
mapping

∆◦τ = {τ1,τ4}∆•τ = {τ2,τ3} ∆◦k = {k2,k3,k5} ∆•k = {k1,k4}

∆k∆τ

P

τ1
τ2
τ3
τ4

k1
k2
k3
k4
k5

(a) Before
iteration

Figure 1: One iteration of IHOP

Quadratic query recovery attacks follow the formulation

P = argmin
P∈P

∑
i,i′∈[n]

∑
j, j′∈[m]

ci,i′, j, j′ ·Pi, j ·Pi′, j′ , (2)

where ci,i′, j, j′ is the cost of jointly assigning keyword ki to to-
ken τ j and ki′ to token τ j′ . This mathematical problem follows
Lawler’s [25] formulation of the general Quadratic Assign-
ment Problem (QAP), which is known to be NP-complete [35].
Existing attacks that follow this formulation thus rely on sub-
optimal heuristic algorithms to find a solution [18, 34].

4.2 Quadratic Query Recovery via Linear As-
signments

While there are efficient optimal solvers for the LAP (1),
solvers for the QAP are suboptimal and heuristic. However,
attacks based on a LAP cannot exploit the quadratic terms
in a QAP that can contain valuable information for query
recovery. We present IHOP, a query recovery attack that relies
on efficient solvers for the LAP to iteratively solve a QAP.

We first explain a single iteration of our attack at a high
level, and then we present its formal description. Figure 1
shows a toy example of an iteration of our attack. At the
beginning of this iteration, the attack has an assignment of
tokens to keywords P (Fig. 1a). Then, it fixes some of those
assignments at random (denoted P•, see Fig. 1b) and frees the
remaining keywords and query tokens. The sets of free query
tokens ∆◦τ , fixed query tokens ∆•τ , free keywords ∆◦k , and fixed
keywords ∆•k for this example are shown in the bottom of the
figure. The attack re-computes an assignment of the free query
tokens to the free keywords, leveraging the fixed assignment
P• to improve the re-estimation (Fig. 1c). This yields an
update of the assignment P and ends the iteration (Fig. 1d).
The idea of this approach is that, if some assignments are fixed,
we can use the quadratic terms involving those assignments
and the assignments we wish to update while keeping the
optimization problem linear.

We formally describe the attack in Algorithm 1. The attack
receives the observations obs and auxiliary information aux,
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Algorithm 1 IHOP

1: procedure IHOP(aux,obs,niters, p f ree)
2: P← SolveLinear(∆k ,∆τ , /0, /0, /0,aux,obs)
3: for i← 1 . . .niters do

4: ∆◦τ
⌈p f ree·m⌉←−−−−− ∆τ ▷ Choose p f ree ·m tokens

5: ∆•τ = {τ j|τ j ∈ ∆τ ,τ j /∈ ∆◦τ} ▷ Fixed tokens
6: ∆•k = {ki|i = p( j),ki ∈ ∆k ,τ j ∈ ∆•τ}
7: ∆◦k = {ki|ki ∈ ∆k ,ki /∈ ∆•k}
8: P• = {τ j→ kp( j)|τ j ∈ ∆•τ}
9: P◦← SolveLinear(∆◦k ,∆

◦
τ ,∆
•
k ,∆
•
τ ,P•,aux,obs)

10: P← combine(P◦,P•)
11: return P

Algorithm 2 SolveLinear
1: procedure SolveLinear(∆◦k ,∆

◦
τ ,∆
•
k ,∆
•
τ ,P•,aux,obs)

2: Get c≡ {ci,i′, j, j′} and d ≡ {di, j} using aux, obs.
3: Solve the linear assignment problem:

P◦ = argmin
P◦∈P ◦

∑
ki∈∆◦k

∑
τ j∈∆◦τ

 ∑
τ j′∈∆•τ

∑
ki′∈∆•k

ci,i′, j, j′ ·P◦i, j ·P•i′, j′ +di, j ·P◦i, j

 .

4: return P◦

and two parameters: the number of iterations niters and the
percentage of free tokens for each iteration p f ree. The attack
begins with an initialization step, where it computes P by
solving a linear problem SolveLinear that we specify below
(Line 2). Then, it iterates niters times. At each iteration, the
attack splits the set of query tokens ∆τ at random into two
groups: the group of free tokens ∆◦τ , which contains ⌈p f ree ·
m⌉ tokens (Line 4), and the group of fixed tokens ∆•τ , which
contains all the other tokens (Line 5). Let ∆•k be the set of
keywords assigned to tokens in ∆•τ by P, and let ∆◦k be the set
of all the keywords not in ∆•k ; i.e., the free keywords (Lines
6–7). The fixed matching P• is the bijective mapping of ∆•τ →
∆•k extracted from P (Line 8). Then, the attack looks for an
assignment P◦ of the free tokens ∆◦τ to the free keywords ∆◦k by
solving a linear problem (Line 9). The attack finally updates
P using the newly computed P◦ and the fixed assignment P•,
and this finishes the iteration.

A key component of this attack is the linear problem
SolveLinear: this problem specifies how the adversary uses
the auxiliary information aux, the observations obs, and the
fixed mapping P• to update the matching P in each iteration.
We show this problem in Algorithm 2. This problem is an
instantiation of a QAP (2) that only considers quadratic terms
that depend on P◦ and P•, but never between two terms in
P◦. Thus, the problem is linear (in P◦) and can be written as
a LAP (1). Since this problem is a LAP, it can be efficiently
and optimally solved with the Hungarian algorithm [22, 25].
The constants c and d are computed from obs and aux, and

their actual expression depends on the SSE setting in ques-
tion; below, we give expressions for these constants for the
volume and frequency leakage scenarios we defined in Sec-
tion 3.2.1. The constants di, j are simply the terms ci,i, j, j in (2),
that we write separately from c in Algorithm 2 to distinguish
purely linear coefficients (d) from quadratic ones (c). Our
attack therefore provides a template that researchers can use
to instantiate quadratic query recovery attacks that optimize
different objective functions, captured by c and d.

4.3 Coefficient Selection in IHOP

We follow an approach inspired by maximum likelihood es-
timation to set the values of the coefficients (c and d) in
each iteration of SolveLinear. In short, SolveLinear finds the
assignment between free keywords and tokens P◦ that max-
imizes the log-likelihood of the observations obs given the
auxiliary information aux.

First, we present the expressions when only one source of
leakage is available to the adversary: either volume leakage,
frequency leakage with independent queries, or frequency
leakage with correlated queries. Then, we explain how we
combine them when more than one source of leakage is avail-
able to the adversary. To derive these expressions, we leverage
binomial and Poisson statistical models for the observations
given the auxiliary information. We note that this is merely
a tool to develop our expressions: we run the experiments in
Sections 5 and 6 with real data.

4.3.1 Volume leakage.

Recall that V is the matrix of observed token volumes, and Ṽ
is the matrix of auxiliary keyword volumes. We use a binomial
model to get the coefficients c and d. Namely, assume that,
when keyword ki corresponds to token τ j (denoted ki→ τ j),
the number of documents with token τ j (i.e., Nd ·V j, j) follows
a binomial distribution with Nd trials and probability given
by the auxiliary volume Ṽi,i. Then, the log-likelihood cost of
assigning token τ j to keyword ki is

di, j =− logPr
(
Bino(Nd , Ṽi,i

)
= Nd ·V j, j) , (3)

where Bino denotes a binomial distribution. We added a minus
sign since we aim at maximizing the log-likelihood, but the
linear problem in Alg. 2 is a minimization. Expanding this
probability and ignoring the summands that do not affect the
optimization problem, we get

di, j =−Nd
[
V j, j log(Ṽi,i)− (1−V j, j) log(1− Ṽi,i)

]
. (4)

We follow the same approach for the quadratic terms ci,i′, j, j′ ,
i.e., we assume that when ki→ τ j and ki′ → τ j′ the number of
documents that have both tokens τ j and τ j′ follows a Binomial
distribution parametrized by Ṽi,i′ , and thus the quadratic term
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is:

ci,i′, j, j′ =−Nd
[
V j, j′ log(Ṽi,i′)− (1−V j, j′) log(1− Ṽi,i′)

]
.

(5)

4.3.2 Frequency leakage with independent queries.

Recall that f is the vector of observed token frequencies, ρ is
the total number of queries issued by the client, and f̃ is the
vector of auxiliary keyword frequencies. We use a Poisson
model to derive the attack coefficients. This means that we as-
sume that, when ki→ τ j, the number of times the client sent to-
ken τ j follows a Poisson distribution with rate ρ · f̃i. Thus, the
cost of assigning ki→ τ j is di, j =− logPr

(
Pois(ρf̃i) = ρf j)

)
.

Expanding this expression and ignoring the summands that
do not depend on both i and j, we get

di, j =−ρ · f j · log f̃i . (6)

In this case, the quadratic coefficients are ci,i′, j, j′ = 0 since all
queries are independent.

4.3.3 Frequency leakage with dependent queries.

We extend this approach to the case where we have dependent
queries. Recall that ρ(τ j) is the number of times the client
queried using token τ j, and that F j, j′ contains the number of
times the client queried for token τ j′ followed by τ j, normal-
ized by ρ(τ j′). F̃i,i′ is the probability that the client queried
for ki′ followed by ki, as computed from the auxiliary informa-
tion. For each free token τ j ∈ ∆◦τ , we first compute the overall
probability that the client sent that token after sending any
other free token τ j′ ∈ ∆◦τ ( j ̸= j′):

F j,◦
.
=

∑
τ j′∈∆◦τ\τ j

ρ(τ j′) ·F j, j′

∑
τ j′′∈∆◦τ

∑
τ j′∈∆◦τ\τ j′′

ρ(τ j′) ·F j′′, j′
.

The numerator counts the number of transitions from any
other free token to τ j and the denominator is a normalization
term so that ∑τ j∈∆◦τ F j,◦ = 1. We also define ρ(∆◦τ) as the
number of times the client queried for a free token other than
τ j, i.e., ρ(∆◦τ) = ∑τ j′∈∆◦τ\τ j ρ(τ j′)

Once again we follow a Poisson model to derive the co-
efficients. When ki → τ j, the number of times the client
queried for τ j consecutively (i.e., ρ(τ j) ·F j, j) follows a Pois-
son distribution with rate ρ(τ j) · F̃i,i. Likewise, the number
of times the client queried for another free token followed
by τ j (ρ(∆◦τ) ·F j,◦) follows a Poisson distribution with rate
ρ(τ◦) · F̃i,◦. Thus, similar to (6), we set

di, j =−
[
ρ(τ j) ·F j, j · log(F̃i,i)+ρ(∆◦τ) ·F j,◦ · log(F̃i,◦)

]
.
(7)

To get the quadratic terms, we assume that when ki→ τ j
and ki′→ τ j′ , the number of times the client sent token τ j after

sending τ j′ follows a Poisson distribution with rate ρ(τ j) · F̃i,i′

(and vice-versa when the client queried for τ j′ after τ j), which
yields

ci,i′, j, j′ =−
[
ρ(τ j′) ·F j, j′ · log(F̃i,i′)+ρ(τ j) ·F j′, j · log(F̃i′,i)

]
.

(8)

4.3.4 Leakage combinations

When the scheme allows both volume and frequency leakage,
and the adversary has the corresponding auxiliary information,
we combine the coefficients additively. For example, when
the scheme leaks the volume and the (independent) query
frequencies, we set di, j as the sum of (4) and (6), and ci,i′, j, j′

is simply (5). The intuition behind this is that, since we are
using log-likelihoods, adding coefficients is equivalent to mul-
tiplying probabilities, and thus this approach is the maximum
likelihood estimator when the volume and frequency leakages
are independent.

4.4 IHOP vs. other attacks
IHOP shares certain concepts with previous attacks; we clar-
ify the differences between our attack and related work fol-
lowing. SAP [31] estimates the keywords of each query by
solving a single LAP using a maximum likelihood-based ap-
proach. Therefore, SAP can be written as a single execution
of SolveLinear with only linear (d) coefficients. IHOP can be
seen as an extension of this idea that accommodates quadratic
coefficients (c) and incorporates the linear program in an it-
eration loop (Alg. 1). This results in a more advanced and
altogether different attack. The connection between IHOP and
attacks like GraphM [34] and IKK [18] is that all these attacks
aim at solving a QAP using different heuristics. IKK aims at
minimizing a Frobenius norm ||Ṽ−PVPT ||F , while GraphM
adds an additional linear term to this objective function. IHOP
minimizes a totally different function, characterized by the co-
efficients c and d we explained above. IHOP’s function is the
first one that can incorporate query correlations into the opti-
mization problem (by setting d as in (8) and (7)). Aside from
the objective functions, the solvers for these three attacks are
also completely different: GraphM uses a convex-concave re-
laxation method, IKK uses simulated annealing, and IHOP uses
a novel iterative algorithm based on solving linear problems.

5 Evaluation: Volume-Leaking SSE Schemes

In this section, we compare the performance of our attack
against other attacks on SSE schemes that leak the access
pattern (S1 and S2 leakage scenarios in Section 3.2.1). We
implement our experiments3 using Python3.8, and run our
code in a machine running Ubuntu 16.04, with 1 TB RAM and
an Intel(R) Xeon(R) CPU E7 (2.40GHz, 160 CPUs). We use

3https://github.com/simon-oya/USENIX22-ihop-code
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Oya and Kerschbaum’s implementation of SAP [31] and the
PATH algorithm [42] from GraphM package4 to implement
Pouliot and Wright’s GraphM attack [34].

We use five public datasets: Enron, Lucene, Movies, News,
and NYTimes. In Appendix C, we explain how we obtain and
process these datasets, and show their statistical differences
(Fig. 12). During this processing, we keep the 3000 most
popular keywords of each dataset, and remove the rest. We
download the query frequencies of each of those keywords
for each week of 2020 from Google Trends 5 using the gtab
package [41]. We found that our results are qualitatively simi-
lar across datasets. Thus, in most of our experiments we show
only results in a few datasets, and provide the complete results
in Appendix E.

We compare IHOP with other statistical-based attacks, and
disregard attacks that rely on ground-truth data [1, 3, 9, 29],
since we do not consider this type of leakage in this paper.

• SAP [31] is an attack by Oya and Kerschbaum that uses
search and access-pattern leakage and a maximum like-
lihood approach to solve a LAP (1). We use the original
implementation by the authors. We set the hypeparame-
ter α = 0.5 as recommended by the authors.

• GraphM [34] is the graph matching attack by Pouliot
and Wright, which aims at minimizing the function (1−
α)||Ṽ−PVPT ||2F−αTr(PT C), where || · ||F denotes the
Frobenius norm and C is a maximum likelihood-based
term. Following the original work [34], we use the PATH
algorithm [42] to find a solution to this problem. We use
α = 0.5, since we empirically found it performs best.

• IKK [18] aims at minimizing ||Ṽ−PVPT ||F using sim-
ulated annealing [21]. We set the initial temperature
parameter of simulated annealing to T = 100, a cooling
factor of pcool = 0.99995, and end the algorithm when
T < 10−10. This yields running times close to GraphM’s.

• Freq is the frequency attack by Liu et al. [26], which
uses exclusively frequency information, and simply
maps each query token to the keyword whose frequency
is closest in Euclidean distance.

We tested other generic algorithms for the QAP ap-
plied to ||Ṽ− PVPT ||F , namely the spectral algorithm by
Umeyama [39] (Umeyama) and the fast projected fixed-point
algorithm by Lu et al. [27] (FastPFP). We found these al-
gorithms provide significantly lower accuracy than the other
attacks in this list, so we omit them from the paper.

In our experiments, we vary the keyword universe size (n)
and dataset size (Nd). Given a value of n, we simply build the
keyword universe in each run of the experiment by selecting
n keywords at random from the set of 3000. Given a value of
Nd , we sample Nd documents from the dataset at random to

4https://projects.cbio.mines-paristech.fr/graphm/
5https://trends.google.com/trends
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Figure 2: Evolution of IHOP’s accuracy with the number of
iterations and different p f ree values in Enron dataset. (S1)

build the client’s dataset. We also give the adversary Naux
d non-

indexed documents selected at random (i.e., they are not in the
client’s dataset) as auxiliary information to compute Ṽ. We
repeat all of our experiments 30 times, measuring the query
recovery accuracy and the running time of the attacks. We run
each attack in a single thread, ensuring that our running time
comparisons are fair. Shaded areas in our plots represent the
95% confidence intervals for the average accuracy.

5.1 Volume-only leakage attacks
We consider the setting where the adversary has auxiliary
volume information only, and relies on access pattern leakage
to estimate the keywords of each query. Since we do not con-
sider frequency information, we set the coefficients of IHOP
as in (4) and (5). We evaluate attacks that use volume (IHOP,
SAP, IKK, GraphM) and exclude Freq from these experiments.

We first consider the case where the adversary observes the
access pattern of each query token during initialization (S1,
m = n). Later, we consider the case where only the access
pattern of the queried tokens is leaked (S2, m≤ n).

IHOP parametrization (S1). We perform an initial exper-
iment to understand how the number of iterations niters and
the percentage of free tokens p f ree affect the performance of
IHOP. Figure 2 shows the attack accuracy (percentage of cor-
rectly guessed query tokens) with the number of iterations, for
different values of p f ree, in Enron dataset with n = 500 key-
words, Nd = 20000 client documents, and Naux

d = 5000 auxil-
iary information documents for the adversary. We see that the
accuracy increases with the number of iterations and that it
converges in all cases, reaching a point where increasing niters
does not yield further improvement. With p f ree = 0.25, the
attack grows from an accuracy of 4.1% before iterating to an
accuracy of 78.7% at 200 iterations, after running for only 38
seconds. Larger p f ree values allow the algorithm to converge
faster, since the algorithm re-computes more assignments per
iteration in those cases. However, a small p f ree increases the
number of quadratic terms that are exploited in each iteration,
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and thus yields higher asymptotic accuracy. We also note that
smaller p f ree implies faster running times, since each iteration
of IHOP uses the Hungarian algorithm which has a cost that
is O(n ·m′+m′2 · logm′) [11], where m′ = ⌈m · p f ree⌉. The
running time of IHOP for p f ree = 0.1,0.25,0.5, and 0.75 in
Enron was 0.14, 0.19, 0.34, and 0.46 seconds per iteration, re-
spectively. We use p f ree = 0.25 in the remainder of the paper,
since it offers a good trade-off between convergence speed
and asymptotic performance.

Attack comparison with Naux
d (S1). We compare the per-

formance of the different attacks in the S1 setting. We set the
number of keywords to n= 500, since GraphM is computation-
ally expensive. We build the client’s dataset with Nd = 20000
documents, and vary the amount of documents we give the
adversary as auxiliary information Naux

d ∈ [500,10000]. Fig-
ure 3 shows the results (we used IHOP with 1000 iterations
and p f ree = 0.25). We see that the attacks’ accuracy increases
as the quality of the auxiliary information grows. The accu-
racy depends on the dataset, but we see that IHOP achieves
higher accuracy than other attacks except in the particular
case of Enron with Naux

d = 500 and 1000. The average run-
ning times of the attacks in Enron, which are similar across
Naux

d , are 33 seconds for SAP, 231 seconds for IHOP, 3.3 hours
for GraphM, and 2.3 hours for IKK.

Attack comparison with n (S1). Next, we study how the
keyword universe size affects the performance of the attacks.
We set Nd = 20000 and Naux

d = 10000, and progressively
increase n from 500 to 1000. Figure 4 shows the results
in Enron and Lucene datasets. The top plots show that the
attack accuracy remains steady for IHOP, slightly decreases
for GraphM, and significantly decreases for IKK. The bottom
plots show the running times in logarithmic scale. We see that
GraphM and IKK quickly become unfeasible as the keyword
universe size increases: with n = 1000 keywords, GraphM
takes around 3 days to finish, while IHOP ends in 15 minutes
and achieves higher accuracy.

Attack comparison with n and fixed number of observed
tokens m (S2). We repeat the previous experiment in the
setting where only the access patterns of the queried key-
words are leaked (S2). We fix the number of distinct key-
words queries (i.e., distinct tokens observed) to m = 500, and
increase n as above. This means that the adversary observes
the access pattern of m = 500 query tokens and has to guess
their corresponding keywords from a larger set n≥ 500. We
show the results in Figure 5. As expected, the accuracy of
all attacks decreases in this case compared to when all ac-
cess patterns are observed. GraphM is particularly affected by
this. This is due to a limitation of the objective function that
GraphM minimizes (||Ṽ−PVPT ||2F unfairly penalizes unas-
signed keywords when n ≥ m). IHOP achieves the highest

accuracy among all attacks in all datasets, and a running time
orders of magnitude below IKK and GraphM.

5.2 Volume and frequency leakage attacks
For the next set of experiments, we consider both volume
and frequency leakage when the client sends queries inde-
pendently. For each experiment, after selecting the keyword
universe ∆k as above, we take the frequency data from Google
Trends for the keywords in ∆k over the span of 2020. Then,
we use the average frequencies of the first half of this year
as the auxiliary information f̃ and generate keywords inde-
pendently at random following the average query frequencies
of the second half of the year (this affects the observed fre-
quencies of tokens f). Since we consider independent query
generation, the adversary uses f and f̃ in their attack. We set
the coefficients of IHOP as the summation of (4) and (6), and
use niters = 1000 and p f ree = 0.25. Besides the attacks we
considered above, we also evaluate Freq.

Attack comparison with ρ (S2). We first compare the at-
tacks that rely on frequency information (IHOP, SAP, and
Freq). We set n = 3000, since these attacks are efficient,
and vary the number of queries ρ. Figure 6 shows the at-
tack accuracy (recall that this is the percentage of distinct
query tokens whose underlying keyword is correctly guessed
by the attack). IHOP comfortably beats both SAP and Freq
(+20% more accuracy than these attacks in all cases), which
are the state-of-the-art in this setting. This is because IHOP is
the only attack that can exploit both frequency and volume
co-occurrence information at the same time.

Access-pattern obfuscation defenses (S2). We evaluate
all attacks against two access-pattern obfuscation defenses:
CLRZ [6] and OSSE [36]. CLRZ randomly adds and removes
keywords from documents before outsourcing the database.
The False Positive Rate (FPR) of CLRZ is the probability that
it adds a keyword to a document that does not have it, and
the True Positive Rate (TPR) is the probability that it keeps
a keyword in a document that has it. CLRZ obfuscation oc-
curs before outsourcing the database, and therefore querying
for the same keyword twice produces the same (obfuscated)
access pattern. OSSE achieves the same effect during query
time: querying for a particular keyword can return documents
that do not contain that keyword and miss some documents
that do contain the keyword. Querying for the same keyword
twice yields (with high probability) different access patterns
in OSSE, providing a certain level of search pattern privacy.

We assume the adversary knows the defense parameters
(TPR and FPR) and explain in Appendix A how we adapt
all the attacks against these defenses. We set n = 500, since
GraphM is too slow for larger keyword universes, and set the
number of queries to ρ = 500. We set TPR=0.9999 and vary
FPR for both defenses. Figure 7 shows the accuracy of the
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Figure 3: Attack comparison in all datasets vs. the number of non-indexed documents of the adversary (Naux
d ) (S1)

500 600 750 1000
Number of keywords (n)

0.00

0.25

0.50

0.75

1.00

At
ta

ck
 A

cc
ur

ac
y

Enron

500 600 750 1000
Number of keywords (n)

0.00

0.25

0.50

0.75

1.00

At
ta

ck
 A

cc
ur

ac
y

Lucene
sap
ihop
graphm
ikk

500 600 750 1000
Number of keywords (n)

1m
5m

15m

2h
6h

24h
72h

Ru
nn

in
g 

Ti
m

e

Enron

500 600 750 1000
Number of keywords (n)

1m
5m

15m

2h
6h

24h
72h

Ru
nn

in
g 

Ti
m

e

Lucene

Figure 4: Attack comparison vs. number of keywords (n) (S1)

attacks against CLRZ and OSSE in Enron dataset. The figure
shows that OSSE is a stronger defense than CLRZ, but we
observe a smaller difference between these defenses than
Shang et al. [36], since we have adapted the attacks against
OSSE more efficiently. More importantly, we see a large
accuracy gap between IHOP and the other attacks.6

Other defenses: discussion. We only considered the CLRZ
and OSSE defenses because they affect the observed volumes
V without modifying the general leakage format we assume
in this paper. We did not consider other defenses like the
proposal by Patel et al. [32] or SEAL [10] because they pad
the documents that are returned to each keyword indepen-
dently, but do not consider how to pad volume co-occurrence.
This works when each document has a single keyword (or
attribute), but not in the keyword query scenario we consider
in this paper unless the client replicates each document once
per each of its keywords, which requires an unfeasible storage
cost. We also disregarded PANCAKE [13] in this section since
it hides frequencies but not volume (we consider this defense
in the following section), and SWiSSSE [16] since it is an
altogether more complex SSE scheme that does not fit our

6We observe an increase in the accuracy of IHOP when FPR=0.01. We
only observed this effect in Enron and Movie datasets, and we conjecture it
is an effect of these datasets’ distribution and how IHOP’s objective function
interacts with it.
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Figure 5: Attack comparison vs. number of keywords (n)
when the adversary sees m = 500 distinct tokens (S2)
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Figure 6: Comparison of attacks that use frequency leakage,
with n = 3000 (S2)

description in this paper, and we believe deserves individual
attention. We note that a purely ORAM-based defense can
protect against IHOP, but these defenses come at a high over-
head cost; our attack is effective against efficient defenses like
CLRZ [6].

6 IHOP against PANCAKE with Query Depen-
dencies

In this section, we evaluate the performance of IHOP in a set-
ting where the client’s queries are correlated, i.e., querying for
a particular keyword ki affects the probability of the keyword
chosen for the next query. This query model is interesting
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Figure 7: Attack comparison vs. CLRZ and OSSE in Enron
dataset (n = 500, ρ = 500) (S2)

because humans rarely make independent decisions, and this
type of query correlations have not been considered in at-
tacks against SSE schemes before (except briefly by Grubbs
et al. in their appendix [14]). As we explained in Sec. 4.3.3,
IHOP can take these correlations into account. We consider a
case where there is frequency-only leakage (S3) so that the
attack’s success relies exclusively on exploiting these query
dependencies. A particular case of frequency-only leakage
is when the client simply queries for individual documents
using their identifier or a “document title”.

Besides showing the effectiveness of IHOP with query cor-
relations, the main contribution of this section is an evalua-
tion of PANCAKE, the frequency hiding defense by Grubbs et
al. [13], in the presence of query dependencies. We provide
an overview of PANCAKE below, then explain how we adapt
IHOP against PANCAKE, and finally introduce our experimen-
tal setup and show our results.

6.1 Overview of PANCAKE

PANCAKE [13] is a system that hides the frequency access
of key-value datasets by using a technique called frequency
smoothing. PANCAKE uses document replication and dummy
queries to ensure that the access frequency to the key-values
in the dataset is uniform. For compatibility with our notation,
we consider the case where the keyword universe and dataset
have the same size (n = Nd), and without loss of generality
keyword ki matches only document di (i ∈ [n]).

We use Figure 8 to summarize how PANCAKE works. In
the figure, n = Nd = 3. Let freal be a vector of length n+ 1,
where its ith entry freal

i contains the real query frequency of
keyword ki, and freal

n+1 = 0 represents the real query frequency
of a dummy keyword-document pair kδ-dδ. We assume that
the client knows freal for simplicity (this only benefits the
client and not the attack). The client creates R(i)= ⌈freal

i /n⌉≥
1 replicas for each document di (i ∈ [n]), and additionally
creates R(n+ 1) = 2n−∑

n
i=1 R(i) dummy replicas dδ. This

makes a total of 2n document replicas, that are encrypted and
sent to the server (in a random order). In Figure 8a, the client
creates two replicas for d1, one for d2 and d3, and two dummy
replicas dδ. We refer to the ℓth replica of ki by ri,ℓ, with ℓ ∈
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Figure 8: Overview of PANCAKE’s setup and queries.

[R(i)]. The client computes a vector of dummy frequencies
fdum
i = R(i)/n− freal

i ≥ 0 for each i ∈ [n+1]. For simplicity,
we assume that the client knows the mapping of keywords
to replicas and stores freal and fdum locally, and refer to the
original paper for more advanced details [13].

When the client wishes to query for a keyword ki, she places
ki inside a buffer of pending queries, and flips three unbiased
coins (Fig. 8b). For each coin flip: if it shows heads, the client
queries for the next keyword in her buffer of pending queries
(e.g., k2 in 8b). If the buffer is empty, she simply samples a
keyword from freal and queries for it (e.g., k1 in Fig. 8b). If
the coin shows tails, the client samples a keyword from fdum

and queries for it (e.g., kδ in Fig. 8b). To query for a keyword,
the client selects one of its replicas at random and generates a
token that retrieves the document associated with that replica.

The probability that the client sends a query for keyword ki
is therefore 1

2 freal
i + 1

2 freal
i = R(i)/2n. Since the client chooses

one of the R(i) replicas at random when querying for ki, the
access frequency of any replica is 1/2n. Since each query
token corresponds to one replica, the frequency of each token
τ j ( j ∈ [2n]) is also 1/2n (uniform); i.e., query tokens are
indistinguishable based on their frequencies.

6.2 Query dependencies against PANCAKE

PANCAKE ensures that each document replica is accessed
with probability 1/2n. However, when there are dependencies
between the keywords that the client chooses, PANCAKE does
not hide these dependencies. Grubbs et al. [13] provide strong
evidence that PANCAKE obfuscates query correlations. Here,
we perform another study of PANCAKE against dependent
queries, and discuss our findings against the ones by Grubbs
et al. [13] in Section 6.4. We consider the case where the
client follows a Markov model to choose the keywords of her
queries, and use Freal to denote the n×n Markov matrix that
characterizes the client’s querying behavior. We assume that
the Markov process is irreducible and aperiodic so that it has a
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unique stationary distribution, freal . This vector (freal) contains
the probability that the client queries for each keyword (at
any point in time) and can be computed analytically from
Freal . The client uses freal as input to PANCAKE to compute
the replicas and dummy distribution. Even though the query
frequency of each token is 1/2n, the correlations between
real queries cause correlations between query tokens which
the adversary can leverage for query recovery (we show an
example of this in Fig. 11, in the appendix).

Now we explain how we adapt our attack against PANCAKE.
When the client queries ρ times, she sends a total of 3ρ to-
kens. The adversary observes the sequence of tokens obs=
[(τ)1, . . . ,(τ)3ρ] and groups them, consecutively, into triples.
Then, the adversary builds the 2n× 2n matrix of observed
frequencies F by considering every two consecutive triples
and counting each transition from a token in the first triple and
a token in the second triple. This matrix is then normalized
by columns, which ensures it is left-stochastic.

The adversary has an n× n auxiliary information matrix
F̃, which captures the client’s querying behavior (ideally, this
matrix is close to Freal). The adversary computes the station-
ary distribution of F̃ (i.e., f̃), and uses it to get the expected
number of replicas for each keyword and the dummy pro-
file that the client is using. Note that if F̃ is far from Freal ,
the adversary’s belief of the number of replicas per keyword
and the dummy profile might be very far from the true ones.
In Appendix B, we explain how the adversary can compute
the matrix of expected frequencies between replicas given F̃,
which we denote by F̂. The adversary uses the matrix of ob-
served token frequencies F and expected replica frequencies
F̂ to match tokens to replicas. This in turn yields a matching
between tokens and keywords. This means that we adapt IHOP
against PANCAKE by setting its c and d coefficients as in (8)
and (7), using F̂ instead of F̃ in these expressions.

6.3 Experimental Results

For our evaluation, we consider the case where the client’s
database is an encyclopedia that she wishes to securely store
on a server. Each document contains information about a par-
ticular topic, identified by its keyword. To build our datasets
and compute the transition probabilities between the queries,
we use data from the Wikipedia Clickstream dataset.7 We
summarize our approach here, and provide full details in Ap-
pendix D. Using PetScan,8 we get all Wikipedia pages under
the five categories ‘privacy’, ‘security’, ‘cryptography’, ‘poli-
tics’, and ‘activism’, including pages in subcategories. This
yields a total of 5573 pages. Many of these pages have hy-
perlinks that allow a user to browse from one to another. We
download the number of times Wikipedia users clicked on
these hyperlinks to transition between these pages in 2020.

7https://dumps.wikimedia.org/other/clickstream/
8https://petscan.wmflabs.org

We build five keyword universes of size n = 500, each fo-
cused on one of the five categories above. For each of these
keyword universes, we use the transition counts to build two
500× 500 transition matrices: one with data from January
2020 to June 2020 (FJUN

JAN ), and another one with data from
July 2020 to December 2020 (FDEC

JUL ). We use FDEC
JUL to generate

the client’s real queries, i.e., Freal = FDEC
JUL . We evaluate both

the case were the adversary has low-quality auxiliary informa-
tion (F̃ = FJUN

JAN , denoted aux ↓ in the plots) and high-quality
information (F̃ = FDEC

JUL , denoted aux ↑).
We consider two values of the total number of queries: ρ =

100000 and ρ = 500000. These are large numbers, because
the datasets contain n = 500 keywords, which generates 1000
replicas with PANCAKE, and thus there are 1000 possible
query tokens. These tokens are all queried with the same
probability (this is guaranteed by PANCAKE), and thus with
ρ = 100000 (resp., ρ = 500000) the server observes ≈ 300
(resp., ≈ 1500) transitions from (or to) each query token,
which we believe is not a large number. We note that attacks
that exploit query dependencies need such large number of
queries to succeed (except in cases where query dependencies
are unusually high).

We evaluate IHOP with p f ree = 0.25 and use niters = 10000.
Figure 9 shows the accuracy of IHOP vs. the number of it-
erations niters, for each of the five category-based keyword
universes. As before, the accuracy in these plots is the per-
centage of query tokens (out of the 2n tokens) for which the
adversary guesses the underlying keyword correctly. In each
plot, the title shows the category, continuous and dashed lines
denote ρ = 100000 and ρ = 500000, respectively, and each
color denotes which defense is used and the quality of auxil-
iary information as explained above. We see that the attack
accuracy and its evolution with niters varies significantly de-
pending on the category (i.e., the underlying Markov model
Freal affects the algorithm’s convergence speed and accuracy).
In most cases, PANCAKE significantly reduces the attack ac-
curacy (blue vs. green lines, and orange vs. red lines). As
expected, increasing the number of queries observed usually
improves the attack. The exception to this is the green lines
for some categories: this is because for these categories the
imperfect auxiliary information (aux ↓) is misleading, so ob-
serving more queries misleads the attack even further. We
see a slower convergence for IHOP compared to Fig. 2; this is
because the attack has volume information in Fig. 2, which
makes the linear coefficients d very helpful even when the
fixed assignment in an iteration P• contains many incorrect
matchings. Our attack in this frequency-only setting (Fig. 9)
relies mostly on the quadratic terms c, which are only truly
helpful when the current assignment P is already accurate.
This makes the attack’s convergence slower.

We summarize the results of our experiment in Figure 10.
Here, each box represents the accuracy of the attack against all
categories (30 accuracy values for each category, 5 categories)
in the last iteration of the attack (niters = 10000). This figure
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shows more clearly the advantage of using PANCAKE over no
defense when there are query dependencies. For ρ = 100000
queries, using PANCAKE decreases the average attack accu-
racy from 93.6% (no defense) to 41.9% (PANCAKE), when the
auxiliary information is low-quality. With high-quality auxil-
iary information, the accuracy decreases from 99.7% to 60.5%
thanks to PANCAKE. Although the decrease is somewhat sig-
nificant, our results confirm that PANCAKE is vulnerable to
query correlations, which differs from the findings in the pre-
liminary analysis by Grubbs et al. [14]. The accuracy gap
between the attack without defense and with PANCAKE is
even smaller when the number of queries increases.

6.4 Discussion

Our experiments show that PANCAKE might not provide
enough protection when there are query dependencies, which
differs from the findings by Grubbs et al. [13]. The reason
for this is that Grubbs et al. consider a case where the client’s
dataset contains mappings of keywords to document identi-
fiers, and of document identifiers to documents. The client
queries first for a keyword, followed by a query for a docu-
ment that contains that keyword. This creates dependencies
between pairs of queries. Their dataset contains ≈ 532000
entries, which results in over one million replicas. They see

that, even when the client issues 10 million queries, the joint
distribution of consecutive accesses is almost flat. This is rea-
sonable, since with one million replicas, 10 million queries
might not be enough information for the adversary. Even
with enough queries, carrying out IHOP in this case would be
computationally prohibitive due to the size of the problem.

To summarize: we have provided the first piece of evi-
dence that there are cases where PANCAKE does not provide
sufficient protection against query correlations. PANCAKE’s
protection against correlated queries thus depends on the key-
word universe and dataset sizes, as well as the strength of
the correlations. Developing statistical-based query recov-
ery attacks able to deal with large keyword universe sizes
and studying PANCAKE’s protection for different correlation
levelsis an interesting future research line.

7 Conclusion

We proposed IHOP, a new attack on SSE schemes that uses
statistical (non-ground-truth) auxiliary information to recover
the client’s queries. Our attack formulates query recovery as
a quadratic optimization problem and uses a novel iteration
heuristic that relies on efficient optimal linear solvers to find
a suitable solution. IHOP is the first query recovery attack that
can leverage both quadratic volume and frequency terms.

We evaluated our attack on real datasets against SSE
schemes that exhibit typical leakage patterns, showing that it
outperforms all other statistical-based query recovery attacks.
In four out of the five datasets we consider, IHOP achieves
almost perfect query recovery accuracy (≈ 100%) in the full
access-pattern leakage setting when the adversary receives a
number of non-indexed documents equal to half the dataset
size, while being more than one order of magnitude faster
than previous attacks. When the adversary sees the access
patterns of a subset of all the keywords only, IHOP widely out-
performs all other attacks (92% accuracy in Lucene; previous
best achieves 7%), while being significantly faster (12 minutes
vs. over 5 hours). We verified IHOP consistently outperforms
other attacks when frequency information is available, as well
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as when efficient access-pattern obfuscation techniques are
applied. Finally, we demonstrate that IHOP can exploit query
dependencies by adapting our attack against the PANCAKE
frequency-smoothing defense. Our results in a small dataset
confirm that PANCAKE might not provide sufficient protec-
tion against query recoveries and urge for a more thorough
analysis of PANCAKE under query dependencies.

Acknowledgments

We gratefully acknowledge the support of NSERC for grants
RGPIN-05849, IRC-537591, and the Royal Bank of Canada
for funding this research. This work benefited from the use of
the CrySP RIPPLE Facility at the University of Waterloo.

References

[1] Laura Blackstone, Seny Kamara, and Tarik Moataz. Re-
visiting leakage abuse attacks. In Network and Dis-
tributed System Security Symposium (NDSS), page TBD,
2020.

[2] Raphael Bost. Σoϕoς: Forward secure searchable en-
cryption. In ACM Conference on Computer and Com-
munications Security (CCS), pages 1143–1154, 2016.

[3] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In ACM Conference on Computer and Com-
munications Security (CCS), pages 668–679, 2015.

[4] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo
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A Adapting IHOP and SAP against CLRZ and
OSSE

We adapt IHOP and SAP against CLRZ following the approach
by Shang et al. [36, Appendix D]. Namely, the adversary
knows the TPR and FPR of CLRZ and computes the n× n
matrix of expected keyword volumes V̂ after the defense is
applied. Recall that Ṽi,i′ is an estimation (from the auxiliary
information) of the probability that a document has both key-
words ki and ki′ . Let ṼNOT

i,i′ be an estimation of the probability
that a document has neither keywords ki nor ki′ (in our exper-
iments, the adversary computes this from the auxiliary data
set). Then, the i, i′th entry of V̂ is [36, Appendix D]

V̂i,i′ =


i ̸= i′ : TPR2 · Ṽi,i′ +FPR2 · ṼNOT

i,i′

+TPR ·FPR · (1− Ṽi,i′ − ṼNOT
i,i′ ) ,

i = i′ : TPR · Ṽi,i′ +FPR · ṼNOT
i,i′ .

(9)

To adapt the different attacks against CLRZ, the adversary
simply uses V̂ instead of Ṽ in the attack’s coefficients.

We explain how we adapt the attacks against OSSE. Re-
call that, in OSSE, the adversary observes access patterns
(with each entry obfuscated with TPR and FPR), but does
not know whether or not two access patterns correspond to
the same keyword, since each access pattern has been gener-
ated with fresh randomness. Let m be the number of distinct
queried keywords in OSSE (the number of distinct observed
access patterns could be up to ρ; i.e., the number of queries).
Following Shang et al. [36], the adversary first clusters the
observed access patterns into m groups (we assume the adver-
sary knows m for simplicity [36]). Let C j be the jth cluster,
for j ∈ [m]. To build the off-diagonal j, j′th entries ( j ̸= j′) of
the matrix of observed volumes V, the adversary computes
the average number of documents in common between one
access pattern from C j and one from C j′ , i.e.,

V j, j′ =
1

|C j| · |C j′ | ∑
a∈C j

∑
a′∈C j′

aT a′

Nd
.

The diagonal entries are V j, j =
1
|C j | ∑a∈C j

aT a
Nd

. The adversary

uses this observation matrix V and the auxiliary matrix V̂
above (9) to run the attacks against OSSE.

B Adapting IHOP against PANCAKE

We provide details into how we adapt IHOP against PANCAKE.
As we mention in the main text, the client chooses keywords
for her queries following a Markov process characterized by
the n×n matrix Freal , with stationary profile freal . Every time

Algorithm 3 Compute F in PANCAKE

1: procedure COMPUTEFREQOBS(n,T1,T2, . . . ,Tρ)
2: F← 02n×2n
3: for i← 1 . . .ρ−1 do
4: for τ j ∈ Ti, τ j′ ∈ Ti+1 do
5: F j′, j← F j′, j +1

6: Normalize columns of F.
7: return F

the client queries the server, PANCAKE creates three query
slots, selects three keywords, and sends the corresponding
query tokens to the server (see Section 6.1). Each of these
keywords can either be dummy (k∼ fdum), real fake (k∼ freal),
or an actual real query (sampled from Freal , according to the
previous real query). Let T1,T2, . . . ,Tρ be the set of query
token triplets observed by the adversary. The adversary builds
the matrix of observed token frequencies F by counting all
token transitions in consectuve triplets (Algorithm 3).

Then, the adversary builds the 2n× 2n expected matrix
of replica frequencies F̂ given the auxiliary information F̃.
First, the adversary computes f̃ from F̃, and gets the number of
replicas of each keyword and the dummy keyword distribution
f̃dum following PANCAKE’s specifications. Let R̃(i) be the
number of replicas for keyword ki and ν : [2n]→ [n] be a
mapping from replicas to keywords, both computed from f̃.

If we generate keyword queries following PANCAKE’s spec-
ifications and using F̃, f̃ and f̃dum, for every two keywords k
and k′ in consecutive triplets, one of the following events
happens:

A. k′ was sampled from f̃dum.

B. k was sampled from f̃dum but k′ was not.

C. Neither k nor k′ were sampled from f̃dum, but at least one
is a “real fake” query sampled from f̃.

D. Both k and k′ are real queries.

Following PANCAKE specifications, one can see that
Pr(A) = 0.5 and Pr(B) = 0.25. We computed the probabilities
of events C and D empirically, since they are constants that
just depend on PANCAKE’s specifications: Pr(C)≈ 0.145 and
Pr(D)≈ 0.105. Note that k and k′ are independent except in
event D. If both k and k′ are keywords for real queries (event
D), then k′ was generated right after k with probability 0.81,
two queries after k with probability 0.17, and three queries
after k with probability 0.02 (we also determined these prob-
abilities empirically; they are constants that only depend on
PANCAKE’s protocol). Summarizing, with probability 0.5 we
have that k′ ∼ f̃dum, with probability 0.25+ 0.145 = 0.395
we have k′ ∼ f̃, and otherwise k′ depends on k. Putting this
together, the transition probabilities between two keywords
in consecutive triplets are:

G = 0.105 · (0.81F̃+0.17F̃2 +0.02F̃3)+0.395 · f̃1T
n +0.5 · f̃dum1T

n .
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Figure 11: Example of PANCAKE under correlated queries.

Matrix F̂ follows this formula, expanded to the space of repli-
cas:

F̂ j, j′ = Gν( j),ν( j′)/R̃(ν( j)) . (10)

Figure 11 shows an example of a Markov model with three
keywords (Fig. 11a), the Markov matrix and stationary profile
(Fig. 11b), and the expected transition between replicas F̂ (10)
(Fig. 11c). In the plot, we used F̃ = Freal to compute F̂, for
illustration purposes. The stationary profile of F̂ is uniform,
but we can see that F̂ is not. The matrix of observed frequen-
cies F is a (noisy) version of F̂, with randomly permuted rows
and columns. We use IHOP to estimate this permutation by
setting the coefficients of IHOP as in (8) and (7), but using F̂
instead of F̃. The result of this is a mapping P from tokens to
replicas, which we map to keywords using ν(·).

C Dataset Generation

Table 2 shows the dataset names, the type and number of
documents they contains, and the source URL that we used
to download them. We download the datasets from the source
we show in the table and parse them so that each document
is a string (an email, news article, or movie plot summary).
Following related work [9], for Enron dataset we only take
documents in the _sent_mail folder; for Lucene, we re-
move the signature at the end of each email that begins with
“To unsubscribe”, since this message appears in all emails.
Then, we follow a series of steps to extract the keywords of
each document:

1. We extract each word in the document using the regular
expression (regex) \w+.

2. We convert all words to lower-case and ignore words
that contain non-alpha characters [33].

3. We ignore English stopwords, and words whose length
is not between 3 and 20 characters [33].

4. We apply Porter stemmer [40] to the remaining words,
and keep the 3000 most popular stems of each dataset.
This stemming process is the most popular approach to
extract keywords in related work [1, 3, 9, 18, 29, 33].

These stems are the keywords in our evaluation. We save, for
each dataset, the different words that yielded each of the 3000
stems. Then, for each of those words, we download their query
frequencies for each week of 2020 from Google Trends.9

We use the gtab package [41] to fix normalization issues of
Google Trends. The query frequency of a particular stem is
the sum of frequencies for each of its keywords. For example,
“time” is a popular stem in Enron dataset. The words that
resulted in this stem are “time”, “timed”, “timely”, etc. We
downloaded the query frequencies for each of those words,
and assumed that queries for each of those words trigger a
match in documents that contain the stem “time”.

Figure 12 shows the volume of each keyword in the datasets.
Recall that the volume of a keyword is the percentage of doc-
uments that contain such keyword. We sort the keywords
of each dataset in decreasing volume order in the plot. In
email datasets (Enron and Lucene), we see that keywords
have lower volumes than in other datasets, which indicates
that each email uses specific terminology that is not very
common among other emails. Datasets that consist of news ar-
ticles (News and NYTimes) lie in the opposite extreme: their
documents use a similar vocabulary, which yields keywords
with overall high volumes. The volume distribution of the
dataset that consists of movie summaries (Movies) is some-
where in between these two extremes. This plot shows that the
datasets we consider are statistically varied. We note that the

9https://trends.google.com/trends
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Figure 12: Keyword volume distribution for each of the
datasets we consider.

volume distribution is not necessarily correlated with attack
accuracy. There are many variables that affect attack accuracy
(e.g., keyword volume uniqueness, keyword co-occurrence
uniqueness, higher-order dependencies between keywords),
and we cannot capture all of them in a single plot.

D Wikipedia Dataset Generation

We explain how we generate the keyword universes and tran-
sition matrices Freal for our experiments with query corre-
lations (Section 6.3). As we mention in the main text, we
consider a scenario where each keyword-document pair repre-
sents a particular topic or webpage, and we use the Wikipedia
clickstream dataset to build a realistic transition matrix Freal

between keywords. Thus, we refer to keywords as pages in
this appendix.

We use PetScan10 to retrieve all Wikipedia pages under
the categories ‘privacy’, ‘security’, ‘cryptography’, ‘politics’,
and ‘activism’, including pages in subcategories up to a depth
of two. This yields 5573 pages. We download the number
of times Wikipedia users transitioned between those pages
in 2020 by querying the Wikipedia Clickstream dataset.11

Let Gbig be a graph where the nodes are these pages, and
the edges between two nodes are the number of times users
transitioned between the pages represented by such nodes.

We explain how we build a keyword universe ∆k of size
n = 500 centered around a category. We start with a subgraph
Gcat ⊂ Gbig with nodes (pages) from that category only. We
remove all nodes with a degree ≤ 1 and we keep removing
nodes with the smallest degree in Gcat until the subgraph
has a size smaller than n. If the subgraph already had less
nodes than n, we add nodes from Gbig (the ones that share

10https://petscan.wmflabs.org
11https://dumps.wikimedia.org/other/clickstream/

more edges with Gcat are added first) until Gcat has n nodes.
Then, let kbig be the node in Gbig \Gcat that has more edges
connecting to Gcat (and let s(kbig) be this number of edges),
and let kcat be the node in Gcat with smallest degree (and let
s(kcat) be this degree). If s(kcat)≤ 1 or if s(kcat)< s(kbig)−2,
we remove kcat from Gcat and replace it with kbig. Otherwise,
we finish the building process, and the remaining n nodes in
Gcat are the keyword universe ∆k for the category.

Finally, we build FDEC
JUL from ∆k as follows (the process

for FJUN
JAN is the same, with data from different months). We

get all transitions between pages in ∆k from July to Decem-
ber (2020), and also get the number of times users accessed
pages in ∆k from other sources (namely, transitions from
pages named ‘other-empty’, ‘other-external’, ‘other-internal’,

‘other-search’, ‘other-other’ in the Clickstream dataset). We
use these transitions from other soruces to compute the query
probability of the pages in ∆k when the user starts a browsing
session (we denote these probabilities by pother).

The columns of FDEC
JUL are transition profiles, i.e., the ith

column is a vector that represents the probability of querying
for a particular page after querying for ki. To compute this
profile for a page ki ∈ ∆k , we count the transitions from ki
to all other ki′ ∈ ∆k and normalize this so that it adds up
to one. We also consider that there is a probability 0.05 of
restarting the browsing session, i.e., with probability 0.05 the
user simply chooses a new page by following pother. This
ensures the Markov process is irreducible and aperiodic. If ki
is a sink page, i.e., a page the user can transition to but that
does not have outgoing transitions to other pages in ∆k , we
simply consider that the user restarts the browsing session
after that page, so the transition profile is just pother.

E Evaluation Results in All Datasets

For completeness, below we show the results of all our ex-
periments in the five datasets. Figures 13, 14, 15, 16, and 17
below correspond to the experiments shown in Figures 2, 4, 5,
6, and 7, respectively. In all these figures, we can see that the
results are qualitatively similar: the trends of IHOP with niters
and p f ree are the same for all datasets in Figure 13, and IHOP
outperforms all other attacks in the remaining experiments.
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Dataset Size Content Source
Enron 30033 Emails https://www.cs.cmu.edu/~./enron/

Lucene 63597 Emails https://mail-archives.apache.org/mod_mbox/lucene-java-user/
Movies 42304 Movie plots http://www.cs.cmu.edu/~ark/personas/

News 49931 Articles https://www.kaggle.com/snapcrack/all-the-news/version/4
NYTimes 299607 Articles https://archive.ics.uci.edu/ml/datasets/bag+of+words

Table 2: Datasets that we consider.
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Figure 13: Evolution of IHOP’s accuracy with the number of iterations and different p f ree values. (S1)
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Figure 14: Attack comparison vs. number of keywords (n) (S1)
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Figure 15: Attack comparison vs. number of keywords (n) when the adversary sees m = 500 distinct tokens (S2)
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Figure 16: Comparison of attacks that use frequency leakage, with n = 3000 (S2)
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Figure 17: Attack comparison vs. CLRZ and OSSE (n = 500, ρ = 500) (S2)
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